HUBUNGAN ANTARA KURVA ELIPS DAN KURVA GELOMBANG DENGAN MENGGUNAKAN IRISAN TABUNG LINGKARAN
DOI:
https://doi.org/10.33019/fraction.v5i1.73Keywords:
Irisan Tabung, Dilatasi Ellips, Kurva Gelombang, Rumus ElipsAbstract
Irisan tabung lingkaran oleh bidang datar dengan memotong secara miring terhadap alasnya menghasilkan kurva elips. Ketika selimut tabung ini dibentangkan secara mendatar maka hasil irisan pada tabung akan berbentuk gelombang sinus. Dengan kata lain kurva elips ketika dibentangkan secara mendatar akan berbentuk kurva gelombang. Penelitian ini bertujuan untuk menurunkan rumus gelombang dari hasil irisan tabung dan menurunkan rumus kurva elips dari rumus kurva gelombang. Hasil penelitian ini yaitu: 1) rumus kurva gelombang sinus dapat diturunkan langsung dari irisan tabung, 2) rumus elips dapat diturunkan dari rumus kurva gelombang sinus yang telah dibuat, dan 3) kurva gelombang sinus dan elips ini mempunyai keliling yang sama.
Downloads
References
[1] H. A. Rohman, “DERIVING THE EXACT FORMULA FOR PERIMETER OF AN ELLIPSE USING COORDINATE TRANSFORMATION,” Alifmatika J. Pendidik. Dan Pembelajaran Mat., vol. 4, no. 1, hlm. 1–16, Apr 2022, doi: 10.35316/alifmatika.2022.v4i1.1-16.
[2] H. A. Rohman dan A. Jupri, “Investigating the Equation and the Area of Ellipse Using Circular Cylinder Section Approach,” dalam International Conference on Mathematics and Science Education of Universitas Pendidikan Indonesia, 2019, hlm. 210–214.
[3] P. Lockhart, Measurement: Harvard University Press, 2012. doi: 10.4159/harvard.9780674067349.
[4] D. Wells, Hidden Connections and Double Meanings. dalam Dover Math Games & Puzzles. Dover Publications, 2018. Diakses: 29 Februari 2024. [Daring]. Tersedia pada: https://store.doverpublications.com/products/9780486824628
[5] A. Mazer, The Ellipse: A Historical and Mathematical Journey | Wiley. John Wiley & Sons, Inc., 2010. Diakses: 29 Februari 2024. [Daring]. Tersedia pada: https://www.wiley.com/en-us/The+Ellipse%3A+A+Historical+and+Mathematical+Journey-p-9781118211434
[6] Archimedes, The works of Archimedes: Edited in Modern Notation with Introductory Chapters. dalam Cambridge library collection. Mathematics. Cambridge: Cambridge University Press, 2010.
[7] A. Bréard, Nine Chapters on Mathematical Modernity: Essays on the Global Historical Entanglements of the Science of Numbers in China. dalam Transcultural Research – Heidelberg Studies on Asia and Europe in a Global Context. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-319-93695-6.
[8] F. DWIJAYANTI, “BENTUK-BENTUK IRISAN BIDANG DATAR DENGAN TABUNG DALAM SISTEM KOORDINAT DIMENSI TIGA,” bachelor, UNIVERSITAS MUHAMMADIYAH PURWOKERTO, 2014. Diakses: 29 Februari 2024. [Daring]. Tersedia pada: https://repository.ump.ac.id/3205/
[9] D. Hilbert dan S. Cohn-Vossen, Geometry and the imagination. New York: Chelsea, 1990.
[10] C. Alsina dan R. B. Nelsen, A Mathematical Space Odyssey: Solid Geometry in the 21st Century. The Mathematical Association of America, 2015.
[11] D. A. Brannan, M. F. Esplen, dan J. J. Gray, Geometry. Cambridge University Press, 2011.
[12] A. Scimone, “Ellipse: what else?,” Math. Gaz., vol. 99, no. 546, hlm. 481–490, Nov 2015, doi: 10.1017/mag.2015.85.
[13] R. Rashed, Classical Mathematics from Al-Khwarizmi to Descartes, 1 ed. Routledge, 2014. doi: 10.4324/9781315753867.
[14] R. Ferréol, “Sinusoid,” Mathcurve. Diakses: 29 Februari 2024. [Daring]. Tersedia pada: https://mathcurve.com/courbes2d.gb/sinusoid/sinusoid.shtml
[15] G. V. García, “PARAMETERIZATION OF THE ELLIPSE BASED ON THE VALENCIA’S SPHERE, WITHOUT TO USE A CARTESIAN COORDINATE SYSTEM,” 2018. Diakses: 29 Februari 2024. [Daring]. Tersedia pada: https://www.semanticscholar.org/paper/PARAMETERIZATION-OF-THE-ELLIPSE-BASED-ON-THE-TO-USE-Garc%C3%ADa/5770c0416c4fe11fe8683bb3b02670e8aa5ad56c
[16] N. Kumar, “So…an ellipse is a sine wave in disguise,” Medium. Diakses: 29 Februari 2024. [Daring]. Tersedia pada: https://medium.com/@mail.nirmal.r/so-an-ellipse-is-a-sine-wave-in-disguise-312b32026d4f
[17] C. B. Boyer, History of Analytic Geometry. Courier Corporation, 2012.
[18] D. Mentrard, “Unfolding of the oblique section of a cylinder,” GeoGebra. Diakses: 8 September 2024. [Daring]. Tersedia pada: https://www.geogebra.org/m/njdk3fs9
[19] Mathematical Etudes Foundation, “Sine wave: cylinder net / Models // Mathematical Etudes.” Diakses: 29 Februari 2024. [Daring]. Tersedia pada: https://en.etudes.ru/models/sine-wave/
[20] G. Toth, Elements of Mathematics: A Problem-Centered Approach to History and Foundations. Springer Nature, 2021.
[21] F. Fuat, GEOMETRI DATAR : INDIVIDUAL TEXTBOOK. Lembaga Academic & Research Institute, 2020.
[22] A. Jupri, Geometri dengan Pembuktian Dan Pemecahan Masalah. Bumi Aksara, 2021.
[23] Meilantifa, H. M. D. Sewardini, M. T. Budiarto, dan J. T. Many, Geometri Dasar. Bahasa dan Sastra Arab, UIN Sunan Gunung Djati, 2018.
[24] M. D. Weir, J. Hass, dan G. B. Thomas, Thomas’ calculus, Metric ed., 12. ed., [Global ed.], [International ed.]. Boston, Mass. Munich: Pearson, 2010.
[25] R. E. Pfiefer, “Bounds on the Perimeter of an Ellipse via Minkowski Sums,” Coll. Math. J., vol. 19, no. 4, hlm. 348–350, Sep 1988, doi: 10.1080/07468342.1988.11973137.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Harun Abdul Rohman

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.










